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Abstract 
 
A heuristic approach for incorporating probabilistic meteorology outlooks, via operational hydrology, 
into derivative hydrology probability forecasts or storm frequency distributions is described.  It con-
structs a weighted set of future possibilities that agree with selected meteorology outlooks.  Many 
times, calculated weights are zero-valued and a question arises on how to properly consider them in the 
biased sample.  After exploring the effects of directly using zero-valued weights, an alternative is pre-
sented that omits historical observations from the biased sample corresponding to zero-valued weights 
(partial historical sampling).  This requires adjustment of the non-zero weights and redefinition of hy-
drology forecast statistics that are based on the biased sample.  Examples of simple storm frequency 
estimation, using El Niño conditional probabilities, illustrate the problem with zero-valued weights for 
some estimators and their negligible effect with other estimators. 
 
 
Introduction 
 
Hydrology probabilities can be forecast indirectly from past historical records of meteorology with wa-
tershed (and other) models via operational hydrology approaches (Croley 1996, 1997, 2000a).  Future 
storm frequencies can be estimated directly from past historical records of sufficient length (Croley 
2001).  Both approaches build a set of “possibilities” for the future, to be treated as a “sample” from 
which to estimate various statistics: hydrology outlook probabilities, storm frequencies, or other pa-
rameters.  These estimates ignore changing climate.  Now, numerous probabilistic meteorology fore-
casts of the changing climate are available to water resource engineers and hydrologists for use in the 
estimation of derivative hydrology probability forecasts or storm frequencies.  The historical sample 
may be biased to match forecast meteorological probability statements by “weighting” it appropriately 
(Croley 2000a).  Basically, those groups of meteorology segments (from the historical record) match-
ing probabilistic meteorology forecasts are given more weight than those not matching.  Boundary 
condition equations for the weights are constructed corresponding to probabilistic meteorology fore-
casts and solved for physically relevant weights.  The solution may involve an optimization when there 
is more than one set of weights possible.  Croley (2000a) describes the formulation of objectives to be 
used in such optimizations and the appropriate solution methodology. 
 
Origin of the Weighted Sample 
 
Consider building an arbitrarily large biased sample (size N ) with repeated observations from the 
original sample (size n ) to force certain events to constitute a larger or smaller portion of the sample 
(Croley 2000a).  Figure 1 illustrates this for an example that forces the relative frequency of September 



air temperatures greater than 7°C to be 20%.  Each scenario, iw , ( i  = 1, 2, … , n ) is duplicated iϑ  
times.  By judiciously choosing these duplication numbers ( 1ϑ , 2ϑ , … , nϑ ), we can force the relative 
frequency of any group of scenarios in the structured sample to any desired value.  Note also that 
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One can estimate the probability of event A , [ ]AP , by its relative frequency, [ ]ˆ AP , defined 
as the number of observations in the sample for which A  occurs (i.e., for which event A  is true), AN  
divided by the total number of observations, N : 
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where the sum is taken over all k  (members of the very large sample) for which A  occurs, denoted as 
Ak , and where iw  is scenario i  from the original sample, kw ¢  is scenario k  from the large sample, 

( )AI w Œ  (the indicator function) is unity if w  is included in event A and zero if not, and  

 

5  ×  9 = 45 

45  ×  4 = 180 

5 of 50 (10%) 

45 of 225 (20%)  
 

Figure 1. Building a biased sample.  For example, each square could represent a scenario in 
which September Air Temperature > 7°C and each circle September Air 
Temperature  < 7°C (Croley 2000). 
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Note that (1) and (3) guarantee that all weights sum to the original sample size, n .  Likewise, other 
statistics can be estimated from the very large sample or, equivalently, from the original sample by ap-
plying weights.  Let kz , k = 1, …, p denote a set of statistics with the following form: 
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where kf  is an arbitrary function of n , kg  is an arbitrary function of several sample values and lower-
order statistics, and ix  are sample values of random variable X  in the original sample of size n .  De-

fine an analogous set of statistics, kz• , k = 1, …, p over the very large sample of size N  and derive a 
weighted set of statistics similar to (4): 
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where ix¢  are sample values of random variable X  in the large sample of size N .  Generally, almost 
any practical statistic can be written in the form of (4), and therefore has a weighted counterpart in the 
form of (5) which is derivable by using the “large-sample” reasoning employed in (2) and (5) and illus-
trated in Figure 1.  For example, the following set of statistics is described by (4): 

 
( )

( )( ) ( ) ( )
( )

1

22

1

33 2

1

1

1

1
1

ˆ
1 2

1ˆ 1, 1, ,
1 1

n

i
i

n

X i
i

n

X i X
i

i
k

x x
n

s x x
n

n
x x s

n n

P X x n
n n

l

l
l l …

y

=

=

=

=

=

= -
-

= -
- -

È ˘> = = =Î ˚ + +

Â

Â

Â

Â

 (6) 

where x  = sample mean of X, 2
Xs  = sample variance of X, ˆ Xy  = sample skew coefficient of X, and 

and ( )i l  is the number of the value in the unordered sample corresponding to the l th order (largest 
value is order 1).  The last statistic in (6) is the Weibull estimator of exceedance probabilities.  The 
corresponding set of statistics defined by (5) is: 
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Note that the weighted estimators of (5) are equivalent to (4) if all weights are unity.  This is in-
tuitively appealing.  It guarantees that weighted statistics degenerate to unweighted statistics when 
there are no weights (i.e., when weights are unity).  However other properties of (4) and (5) may not be 
similar.  For example, consider the sample variance in (6) and (7).  Statisticians recognize the former 
as an unbiased estimator of the population variance from a sample of size n  while the latter results 
from the application of the following to the very large sample of size N , as in (5): 
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which would be a biased estimate of the population variance from a sample of size N  if the sample 
was a true random sample (had not been specifically constructed in the manner described here).  How-
ever, whenever ( )kf n  = 1 n  then statistic properties in (4) and (5) will be similar.  This is because (4) 
and (5) become identical (except for sample size): 
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Zero Weights 
 
It is observed that weighting solutions often involve zero-valued weights.  Thus, the corresponding his-
torical observations, weighted by these zero values, are not represented in the “sample” from which 
derivative forecasts are made.  See, for example, Figure 2.  There are multiple manners in which to 
consider zero-valued weights.  One way is to simply use the zero weights directly in the weighted sta-
tistics as if the corresponding observations (scenarios) are still in the sample.  Unfortunately, this can 
result in strange behavior in some of the statistics.  For example, the Weibull estimator of exceedance 
probabilities [last line in (7)] will assign the same exceedance probability estimate to more than one 
sample value of X.  Successive exceedance probability estimates differ by the weight assigned to the 
smaller X value divided by (n + 1) and, if the weight is zero-valued, the successive estimates are iden-
tical.  This is undesirable if, for example, these successive estimates are later used to linearly interpo-



late for a value of X from an exceedance probability; the many (infinite) possible values of X make it 
indeterminate.  This will be illustrated shortly in the Examples section. 

An alternate method of considering zero-valued weights involves a reformulation of the sam-
ple.  Consider a weighted sample of n observations, where only d weights are non-zero (d < n), as a 
weighted sample of d observations where all weights are non-zero (i.e., eliminate the zero-weighted 
observations).  The discussion of the preceding section concerned non-zero-valued weights, but a 
slight adjustment can be used to include zero-valued weights.  Suppose that for the set of statistics de-
fined in (4), some of the weights are zeroes.  For the sake of notation, suppose that the last n d−  
weights are zeroes.  The unweighted statistics over the smaller sample are: 
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The corresponding weighted statistics then become: 

 ( ) ( )1 1
1

, , , , 1, ,
d

k k i k i k
i

z f d w g x z z k p… …∑ ∑ ∑
-

=

= =Â  (11) 

That is, the sample size is effectively reduced by the presence of zero-valued weights.  This set of sta-
tistics still has the desired properties established above; the set of statistics in (11) approaches the un-
weighted version in (10) as the weights go to unity. 

 

5 × 10 = 50 

40 × 5 = 200 

5 of 50 (10%) 

50 of 250 (20%) 

5 × 0 = 0 

 
 

Figure 2.  Building a biased sample with some zero-valued “weights.” 
 



Recall that even though there may be zero-valued weights in a set of n weights, their sum is 
equal to n.  For all the weights to sum to the (new) sample size, the d non-zero-valued weights must be 
recomputed relative to the new sample size (d). 
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where iw¢  = recomputed (or adjusted) weight.  The adjusted weights now sum to the new sample size, 
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Likewise, the adjusted weights still satisfy (2), now for the smaller sample size: 
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and still satisfy an equation like (5) with some substitutions for the arbitrary leading constant term, 
now for the smaller sample size, to guarantee that the statistics revert to their unweighted form in (10): 
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Examples 
 
Historical data for the Maumee River basin were used to construct a sample of annual maximum daily 
river flows from the Maumee River into Lake Erie (Croley 2000b, 2001).  Conventional storm fre-
quency estimates are calculated for the Maumee River annual maximum daily flow with the Weibull 
estimator in (6) as the blue line in Figure 3.  Croley (2000b, 2001) then used El Niño conditional prob-
abilities to calculate weights to bias storm frequency estimates for a forecast made in September 1999.  
The weights are given in Table 1.  Climate-biased storm frequencies for the annual maximum daily 
flow are estimated by applying the weights in Table 1 to the historical sample of annual Maumee River 
basin flow extremes with the Weibull estimator in (7), to estimate the storm frequencies as the red line 
in Figure 3.  As mentioned in the last section, the presence of zero-valued weights leads to strange be-
havior in the estimate when they are used directly in the weighted statistics.  The Weibull estimator of 
exceedance probabilities [last line in (7)] assigns the same exceedance probability estimate to more 
than one sample value of X when there are zero weights.  This gives rise to horizontal line segments in 



 

 

Figure 3.  Non-parametric estimates of exceedance probability with the Weibull statistic. 
 
 

Table 1. Maumee River Weights for Biasing Annual 
Maximum Daily Flow Probability Exceedance 
Estimates. 

Year Weight Year Weight Year Weight 
(1) (2) (3) (4) (5) (6) 

1949 0.003264 1965 0 1981 0 
1950 0.716331 1966 3.560669 1982 0 
1951 0 1967 2.376111 1983 11.123379 
1952 0.979820 1968 0 1984 0 
1953 0.007180 1969 0 1985 0 
1954 0.018277 1970 0 1986 0 
1955 0 1971 0 1987 2.377790 
1956 0 1972 0 1988 0 
1957 0.005875 1973 0.000839 1989 0 
1958 0 1974 1.900889 1990 6.854586 
1959 0 1975 0 1991 0 
1960 0 1976 0 1992 0 
1961 0 1977 0.004943 1993 0 
1962 0.000839 1978 0 1994 6.891700 
1963 2.836320 1979 0 1995 4.243991 
1964 3.097198 1980 0   
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the red line in Figure 3.  This is undesirable since these successive estimates may be later used to line-
arly interpolate for a value of X (annual maximum daily flow) given an exceedance probability; the 
many (infinite) possible values of X make it indeterminate.  Also note another problem with the red 
line in Figure 3; the exceedance probability goes to zero as the flow gets large.  This results because 
the weight associated with the largest value in the sample is zero-valued.  However, the Weibull esti-
mator does not have this property in the unweighted case and was not intended to.   

Nineteen of the weights in Table 1 are non-zero; their values are adjusted with (12) and appear 
in Table 2.  Climate-biased storm frequencies for the annual maximum daily flow are estimated by ap-
plying the weights in Table 2 to the historical sample of annual Maumee River basin flow extremes 
with the Weibull estimator in (7), as modified by (15) for using only non-zero valued weights, to esti-
mate the storm frequencies as the yellow line in Figure 3.  Now there are no horizontal portions to the 
estimate (the two segments that appear horizontal are actually slightly sloped).  Thus, the yellow line in 
Figure 3 may be inverted to linearly interpolate a flow value given an exceedance probability.  Also, 
the yellow line in Figure 3 shows that the exceedance probability does not go to zero as the flow gets 
large.  This is a desirable property for the Weibull estimator. 

Finally in Figure 3, note that the weighted (biased) Weibull estimators shift the distribution 
from the unweighted (unbiased) case.  Both of the weighted estimates are steeper than the unweighted 
estimate and increase the exceedance probability for low flows and decrease it for high flows.  These 
observations can be sharpened and refined by using a parametric estimator; that is, a family of distribu-
tions is assumed to apply to the sample data.  Croley (2000b, 2001) used the first 3 equations in (6) and 
(7) to fit Log-Pearson Type III distributions to unweighted and weighted samples (respectively) of 
Maumee River data.  Figure 4 shows the resulting Log-Pearson Type III distributions.  The blue line in 
Figure 4 corresponds to the unweighted (unbiased) estimate; the red line corresponds to the biased es-
timate made with all the weights in Table 1; the yellow line corresponds to the biased estimate made 
only with the 19 non-zero-valued weights in Table 2.  Two interesting observations can be made in 
Figure 4.  First, we can refine our estimates of the effect of biasing the estimation to reflect the El Niño 
conditions used to calculate the weights.  Both weighted estimates are steeper than the unweighted es-
timate and increase the exceedance probability for flows below about 2200 m3s-1 and decrease it above.  
Second, we observe that both weighted (biased) estimates are very similar (almost indistinguishable) at 
this scale.  This is a point of information on how important (or not) it is to account for zero-valued 
weights.  In this example, the use of zero-valued weights and sample moments unadjusted for zero-
valued weights has little effect on the biasing.  In general, using all weights (including zero values) of-
ten is sufficient; using only non-zero values can have practical advantages but is not necessarily theo-
retically better. 

Table 2.  Adjusted Non-Zero Weights for Biased Maumee 
River Exceedance Probability Estimates. 

Year Weight Year Weight Year Weight 
(1) (2) (3) (4) (5) (6) 

1949 0.001319 1963 1.146597 1983 4.496685 
1950 0.289581 1964 1.252059 1987 0.961234 
1952 0.396097 1966 1.439419 1990 2.771003 
1953 0.002903 1967 0.960556 1994 2.786006 
1954 0.007389 1973 0.000339 1995 1.715656 
1957 0.002375 1974 0.768444   
1962 0.000339 1977 0.001998   

 



 
Summary 
 
The origin of a weighting technology for biasing a historical sample of observations lies in the con-
struction of a very large biased sample from the original sample.  Weighted sample statistics can be 
defined equivalently over the original sample, preserving the form of the unweighted statistics when 
the weights are all unity and then extended for the case where some weights are zero-valued via partial 
sampling.  Corrections must be made to the weights in this case to preserve desirable statistical proper-
ties.  Historical data for the Maumee River basin and biasing weights (from others’ studies of El Niño) 
were used to construct non-parametric storm frequency estimates with the Weibull estimator and pa-
rametric estimates using the Log-Pearson Type III distribution.  The presence of zero-valued weights 
leads to strange behavior in the Weibull estimator, allowing the same exceedance probability for more 
than one sample value of X.  Inverting this distribution estimate is therefore not possible since there are 
many values of X for a given value of exceedance probability.  Another problem is that the exceedance 
probability can be zero at the maximum sample flow, which is not a desired property of the Weibull 
estimator.  Using only non-zero-valued weights in the biasing eliminates these problems.  On the other 
hand, the use of zero-valued weights may make only small differences in parametric estimates.  The 
example Log-Pearson Type III distributions, fitted both with all weights and with only non-zero-valued 
weights, are very similar.  The use of zero-valued weights and sample moments unadjusted for zero-
valued weights had little effect on the biasing.  Complete software, in the form of an easy-to-use inter-
active Windows graphical user interface, and worked examples are available free of charge over the 
World Wide Web.  The software, examples, and tutorial materials may be acquired in a self-installing 
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Figure 4. Parametric estimates of exceedance probability using Log-Pearson Type III 
distribution. 



file by visiting from the web site entitled http://www.glerl.noaa.gov/wr/OutlookWeights.html and 
downloading. 
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